Any revealing of identification, appeal to evaluator and /or equations written eg. 42+8=50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Seventh Semester B.E. Degree Examination, Dec.2023/Jan.2024 Advanced Computer Architectures

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Explain Uniform Memory Access (UMA) and Non-Uniform Memory Access (NUMA) multiprocessor models. (06 Marks)
 - b. Define the various types of data dependence.

(05 Marks)

c. Draw the dependence graph showing both data and resource dependence for the following code segment:

 $P_1: C = D \times E$

 $P_2 : M = G + C$

 $P_3:A=B+C$

 $P_4: C = L + M$

 $P_5: F = G \div E$

(05 Marks)

OF

- 2 a. Explain the topologies of the following static connection networks, in terms of network parameters:
 - (i) Linear array
 - (ii) Ring.
 - (iii) Barrel shifter.
 - (iv) Mesh.

(08 Marks)

b. Explain Flynn's classification of computer architectures, with neat block diagrams.

(08 Marks)

Module-2

- a. Distinguish between RISC and CISC processor architectures with the help of block diagram.

 Also compare the architectural characteristics of the same. (10 Marks)
 - b. Explain in detail, hierarchical memory technology.

(06 Marks)

OR

4 a. Consider the design of a three level memory hierarchy with the following specifications;

Memory level	Access time	Capacity	Cost / K byte
Cache	$t_1 = 25 \text{ ns}$	$S_1 = 512 \text{ kB}$	$C_1 = $ \$ 0.12
Main memory	$t_2 = unknown$	$S_2 = 32 \text{ MB}$	$C_2 = $ \$ 0.02
Disk array	$t_3 = 4 \text{ ms}$	S_3 = unknown	$C_3 = $ \$ 0.00002

- (i) Compute S₃, if the total cost of the memory hierarchy is upper bounded by \$ 1500.
- (ii) Compute t_2 , if effective memory access time t = 850 nS with a cache hit ratio $h_1 = 0.98$ and $h_2 = 0.99$ in main memory. (08 Marks)
- b. What is page replacement? Define the various page replacement policies.

(08 Marks)

Module-3

- 5 a. With neat block diagrams, explain bus arbitration schemes. (10 Marks)
 - b. List the various block mapping schemes for cache memory. Explain any one in detail.

(06 Marks)

OR

- 6 a. Explain in detail, the following mechanisms for instruction pipelining:
 - (i) Prefetch buffers.

(ii) Internal data forwarding

(08 Marks)

b. Consider the following pipeline reservation table:

	1	2	3	4
S_1	X			X
S_2		X		
S_3			X	

- (i) What are the forbidden latencies?
- (ii) Draw the state transition diagram.
- (iii) List all the simple and greedy cycles.
- (iv) Compute Minimal Average Latency (MAL)
- (v) Determine the throughput using MAL.

(08 Marks)

Module-4

- 7 a. Explain in detail, write invalidate and write update cache coherence protocols for write through caches. (08 Marks)
 - b. Explain the format of message used in a message passing network. Also differentiate between store-and-forward routing and wormhole routing. (08 Marks)

OR

- 8 a. Explain the various prefetching techniques used in shared virtual memory. (04 Marks)
 - b. Define the following:
 - (i) Sequential consistency
 - (ii) Processor consistency.
 - (iii) Weak consistency
 - (iv) Release consistency.

(04 Marks)

c. Explain the various context-switching policies adopted in multithreaded architectures.

(08 Marks)

Module-5

- 9 a. Define the two basic mechanisms used for inter process communication. (04 Marks)
 - b. Explain any four language features for parallel programming.

(08 Marks)

c. Illustrate spin locks and suspend locks used for protected access of shared variables.

(04 Marks)

OR

- 10 a. Define loop unrolling. Illustrate the same with a suitable example. (05 Marks)
 - b. With a state transition diagram, explain 2 bit branch predictor.

(05 Marks)

c. Explain Tomasulo's algorithm.

(06 Marks)

* * * *